Sains Malaysiana 53(5)(2024): 1105-1118

http://doi.org/10.17576/jsm-2024-5305-11

 

Investigating Potential Sources of Sore Throat: Physico-Chemical Attributes and Microbial Contamination in Rambutan from Fresh Harvests and Retail Stores

(Mengkaji Punca Potensi Sakit Tekak: Sifat Fiziko-Kimia dan Pencemaran Mikrob dalam Rambutan daripada Penuaian Segar dan Kedai Runcit)

 

ILIYA ZAKIRAH IZHAR1, SAIFUL IRWAN ZUBAIRI1,*, ZAINUN NURZAHIM1, HARISUN YAAKOB2 & ZALIFAH MOHD KASIM1

 

1Department of Food Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

 

Diserahkan: 9 Disember 2023/Diterima: 25 Mac 2024

 

Abstract

Rambutan (Nephelium lappaceum), a tropical fruit cherished for its succulent flesh and vibrant appearance, is cultivated extensively across various regions worldwide. However, despite its popularity, the fruit faces challenges related to particulate contamination during the harvesting process. Particulate matter contamination refers to the presence of solid or liquid particles suspended in the air or adhered to the fruit's surface, posing potential risks to both consumer health and fruit quality. Hence, this study aims to identify the factors in rambutan that could cause sore throats by analysing its physicochemical properties and conducting a microbiological study. For this study, two samples of rambutan fruit which are rambutan sold in stores (RS) and rambutan freshly harvested from the tree (RT) were collected and analysed for their external peel, internal peel, and pulp parts (n = 3). The assessment included the weight of visible fine dirt, pH value, oil content, surface morphology and total coliform (TPC). The results showed that the weight of visible fine dirt on RT external peel (93.50 ± 5.00 mg) and the pH value of its external peel and pulp (4.17 ± 0.00 - 5.17 ± 0.00) were significantly higher and more acidic (p<0.05) than those of RS. However, there were insignificant differences (p>0.05) in oil content (0.36 ± 0.7 - 0.38 ± 0.8%) between the external peels of the rambutan samples. Additionally, the surface morphology and image analysis of RS showed more foreign particles, represented as black or white dots on its internal peel and pulp, compared to RT, which was suspected to be yeast. Moreover, the total coliform count for both samples was significantly different (p<0.05) in their external peel and pulp, but it was still within the safe eating limit. The study concluded that environmental pollution and contamination during rambutan handling could cause sore throat.

 

Keywords: Contamination; microbes; physicochemical properties; Rambutan particulates: sore throat

 

Abstrak

Rambutan (Nephelium lappaceum) adalah buah tropika yang digemari kerana isinya yang lembut dan tampaknya yang menarik, ditanam secara meluas di pelbagai kawasan di seluruh dunia. Walau bagaimanapun, buah ini menghadapi cabaran berkaitan dengan pencemaran partikulat semasa proses penuaian. Pencemaran bahan partikulat merujuk kepada kehadiran zarah pepejal atau cecair yang terampai di udara atau melekat pada permukaan buah yang membawa risiko kepada kesihatan pengguna dan kualiti buah. Oleh yang demikian, kajian ini bertujuan untuk mengenal pasti faktor pada buah rambutan yang dapat menyebabkan sakit tekak melalui analisis sifat fizikokimia dan mikrobiologi. Dalam kajian ini, dua sampel buah, iaitu rambutan yang dijual di kedai (RS) dan rambutan yang baru dituai daripada pokok (RT) dikumpul dan dianalisis untuk bahagian kulit luar, kulit dalam dan isi buah (n = 3). Analisis yang dijalankan merangkumi berat kotoran halus terlihat, nilai pH, kandungan minyak, morfologi permukaan dan jumlah koliform (TPC). Hasil kajian menunjukkan bahawa berat kotoran halus terlihat pada kulit luar (93.50 ± 5.00 mg); dan nilai pH pada kulit luar dan isi sampel RT (4.17 ± 0.00 - 5.17 ± 0.00) lebih signifikan tinggi dan berasid (p<0.05) berbanding RS. Namun, perbezaan dari segi kandungan minyak pada kulit luarnya (0.36 ± 0.7 - 0.38 ± 0.8%) tidak signifikan (p>0.05). Seterusnya, imej dan analisis morfologi pada kulit dalam dan isi RS menunjukkan lebih banyak zarah asing berbanding RT yang merujuk kepada imej titik hitam dan putih yang disebabkan oleh pertumbuhan yis. Kemudian, jumlah koliform pada kulit luar dan isi kedua-dua sampel juga signifikan berbeza (p<0.05), namun masih dalam had yang selamat dimakan. Kajian ini menyimpulkan bahawa pencemaran persekitaran dan kontaminasi semasa pengendalian rambutan boleh menyebabkan sakit tekak.

 

Kata kunci: Ciri fizikokimia; kontaminasi; mikrob; partikulat Rambutan; sakit tekak

 

RUJUKAN

Abdul Karim, A.F., Hanafi, I. & Zulkifli, M.A. 2018. Effects of kenaf loading and alkaline treatment on properties of kenaf filled natural rubber latex foam. Sains Malaysiana 47(9): 2163-2169.

Abu Bakar, N.H., Othman, H.F., Rajab, N.F., Budin, S.B., Shamsuddin, A.F. & Mohamed Nor, N.A. 2019. Primary skin irritation and dermal sensitization assay: In vivo evaluation of the essential oil from Piper sarmentosumroxbPharmacognosy Magazine 15: 352-358.

Aizad, S., Zubairi, S.I., Lazim, A. & Yahaya, B.H. 2021. Centella asiatica extract potentiates anticancer activity in an improved 3-D PHBV-composite-CMC A549 lung cancer micro-environment scaffold. Arabian Journal for Science & Engineering 46: 5313-5325.

Afzaal, M., Saeed, F., Bibi, M., Ejaz, A., Shah, Y.A., Faisal, Z., Ateeq, H., Akram, N., Asghar, A. & Shah, M.A. 2022. Nutritional, pharmaceutical, and functional aspects of rambutan in industrial perspective: An updated review. Food Science & Nutrition 11(7): 3675-3685.

Aguilera, A., Bautista, F., Goguitchaichvili, A. & García-Oliva, F. 2021. Health risk of heavy metals in street dust. Frontiers in Bioscience 26: 327-345.

Alegbeleye, O., Olumide, A.O., Mariyana, S. & Deyan, S. 2022. Microbial spoilage of vegetables, fruits and cereals. Applied Food Research 2(1): 100122.

AOAC Official Methods of Analysis. 1990. AOAC International. Official Method 981.12. 15th ed. Arlington. p. 988.

Azrina, A., Mohamad Firdaus, M.Y. & Mohd Azmier, A. 2022. Removal of Bisphenol S from aqueous solution using activated carbon derived from rambutan peel via microwave irradiation technique. Sains Malaysiana 51(12): 3967-3980.

Banoub, R., Alalade, E., Bryant, J., Winch, P. & Tobias, A.J. 2023. Allergic reactions to Sugammadex: A case series and review of the literature. The Journal of Pediatric Pharmacology and Therapeutics 28(4): 374-379.

Blumenthal, K.G., Wolfson, A.R., Li, Y.Z., Seguin, C.M., Phadke, N.A., Banerji, A. & Mort, E.A. 2019. Allergic reactions captured by voluntary reporting. Journal of Patient Safety 17: e1595-e1604.

Chai, K.F., Mohd Adzahan, N., Karim, R., Rukayadi, Y. & Ghazali, H.M. 2018a. Effects of fermentation time and turning intervals on the physicochemical properties of rambutan (Nephelium lappaceumL.) fruit sweatings. Sains Malaysiana 47(10): 2311-2318.

Chai, K.F., Mohd Adzahan, N., Karim, R., Rukayadi, Y. & Ghazali, H.M. 2018b. Characteristics of fat, and saponin and tannin contents of 11 varieties of rambutan (Nephelium lappaceumL.) seed. International Journal of Food Properties 21: 1091-1106. 

Chaurasia, P.K., Bharati, S.L. & Mani, A. 2019. Significances of fungi in bioremediation of contaminated soil. New and Future Developments in Microbial Biotechnology and Bioengineering, edited by Singh, J.S. & Singh, D.P. Elsevier. pp. 281-294.

Coutinho, G., Duerden, M.G., Sessa, A., Caretta, B.S. & Altiner, A. 2020. Worldwide comparison of treatment guidelines for sore throat. International Journal of Clinical Practice 75(5): e13879.

Deng, H., Wu, G., Zhang, R., Yin, Q., Xu, B., Zhou, L. & Chen, Z. 2023. Comparative nutritional and metabolic analysis reveal the taste variations during yellow rambutan fruit maturation. Food Chemistry X 19(17): 100580.

Du, Q., Fu, M., Zhou, Y., Cao, Y., Guo, T., Zhou, Z., Li, M., Peng, X., Zheng, X., Li, Y., Xu, X., He, J. & Zhou, X. 2020. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Scientific Reports 10: 2961.

Dubreuil, J. 2020. Fruit extracts to control pathogenic Escherichia coli: A sweet solution. Heliyon 6: e03410.

Edyson, E., Murgianto, F., Ardiyanto, A., Astuti, E.J. & Ahmad, M.P. 2022. Preprocessing factors affected free fatty acid content in crude palm oil quality. Jurnal Ilmu Pertanian Indonesia 27(2): 177-181.

Elhassaneen, Y.A., Hassab El-Nabi, S.E., Bayomi, A.I. & ElKabary, A.R. 2022. Potential of watermelon (Citrullis lanatus) peel extract in attenuating benzo[a]Pyrene exposure-induced molecular damage in liver cells in vitro. Journal of Biotechnology Research 8(3): 32-45.

European Commission. 2005. Microbiological criteria for food stuffs. No. 2073/2005. https://publications.europa.eu/en/publication-detail/-/publication/d62db802-56e9-4052-888fff5def2 fa0f2/ language-e Accessed 20 February 2023.

Fairuz, H.I., Nor Azlin, M.N. & Farah Ayuni, S. 2021. The heavy metals and microbial profile of organic fruits sold at retail in Malaysia. Malaysian Journal of Medicine and Health Sciences 17(Suppl. 8): 1-6.

Feroz, F. & Noor, R. 2019. Transmission of pathogens within the commonly consumed vegetables: Bangladesh perspective. Stamford Journal of Microbiology 8(1): 46-49.

González, R.L., Djabayan, D.P., Prato, J., Ríos, C., Carrero, J., Trelis, M. & Fuentes, M. 2023. Field study of parasitic contamination of fruits, vegetables and leafy greens in the Ecuadorian Andes. F1000Research 12: 532.

He, Y., Chen, R., Qi, Y., Salazar, J., Zhang, S., Tortorello, M., Deng, X. & Zhang, W. 2021. Survival and transcriptomic response of Salmonella enterica on fresh-cut fruits. International Journal of Food Microbiology 348: 109201.

Hegazy, A.E. & Ibrahium, M.I. 2012. Antioxidant activities of orange peel extracts. World Applied Sciences Journal 18(5): 684-688.

Hernández, H.C., Aguilar, C.N., Rodríguez, H.R., Flores, G.A.C., Morlett, C.J.A., Govea, S.M. & Ascacio, V.J.A. 2019. Rambutan (Nephelium lappaceumL.): Nutritional and functional properties. Trends in Food Science & Technology 103: 201-210.

Hernández, C., Juan, A.A.V., Heliodoro, D.L.G., Jorge, E.W.P., Cristobal, N.A., Guillermo, C.M., Cecilia, C.L. & Antonio, A.C. 2017. Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceumL. (Mexican rambutan) husk. Asian Pacific Journal of Tropical Medicine 10(12): 1201-1205.

International Commission on Microbiological Specifications for Foods (ICMSF). 1986. Microorganisms in Foods 2, Sampling for Microbiological Analysis: Principles and Specific Applications. Canada: University of Toronto Press.

Ismael, R., Aviat, F., Michel, V., Le Bayon, I., Gay-Perret, P., Kutnik, M. & Fédérighi, M. 2013. Methods for recovering microorganisms from solid surfaces used in the food industry: A review of the literature. International Journal of Environmental Research and Public Health 10(11): 6169-6183.

Jahurul, M.H.A., Azzatul, F.S., Sharifudin, M.S., Norliza, M.J., Hasmadi, M., Lee, J.S., Patricia, M., Jinap, S., George, M.R., Khan, M.F. & Zaidul, I.S.M. 2020. Functional and nutritional properties of rambutan (Nephelium lappaceumL.) seed and its industrial application: A review. Trends in Food Science & Technology 99: 367-374.

Jantapaso, H. & Mittraparp-arthorn, P. 2022. Phytochemical composition and bioactivities of aqueous extract of Rambutan (Nephelium lappaceumL. cv. Rong Rian) peel. Antioxidants 11(5): 956.

Julien, J.F., Gérard, C., Campagnoli, M. & Zuber, S. 2019. Strategies for the safety management of fresh produce from farm to fork. Current Opinion in Food Science 27: 145-152.

Karanth, S., Feng, S., Patra, D. & Pradhan, A.K. 2023. Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labelling. Frontiers in Microbiology 14: 1198124.

Krüger, K., Töpfner, N., Berner, R., Windfuhr, J.P. & Oltrogge, J.H. 2021. Sore throat. Deutsches Arzteblatt International 118(11): 188-194.

Kasmin, N.H., Zubairi, S.I., Lazim, A. & Awang, R. 2020. Thermal treatments on the oil palm fruits: Response surface optimization and microstructure study. Sains Malaysiana 49(9): 2301-2309.

Lee, W., Ford, M. & Randall, K.L. 2019. IgE-mediated allergy to remifentanil? Anaesthesia and Intensive Care 47: 98-99.

Li, W., Zeng, J. & Shao, Y. 2018. RambutanNephelium lappaceum. In Exotic Fruits, edited by Rodriguez, S., de Oliveira Silva, E. & de Brito, E.S. Massachusetts: Academic Press. pp. 369-375.

Lufu, R., Ambaw, A. & Opara, U.L. 2020. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae272: 109519.

Luo, W., Yang, S., Huang, H., Wu, L., Cheng, Z.J., Zheng, P., Zheng, J. & Sun, B. 2021. Analysis of peanut allergen components sensitization and cross reaction with pollen allergen in Chinese southerners with allergic rhinitis and/or asthma. Journal of Asthma and Allergy 14: 1285-1293.

Machado, M.B., Richards, K., Brennan, F., Abram, F. & Burgess, C. 2019. Microbial contamination of fresh produce: What, where, and how? Comprehensive Reviews in Food Science and Food Safety 18(6): 1727-1750.

Mahmood, K., Kamilah, H., Alias, K. & Fazilah, A. 2018. Nutritional and therapeutic potentials of rambutan fruit (Nephelium lappaceumL.) and the by-products: A review. Journal of Food Measurement and Characterization 12(3): 1556-1571.

Mohd Aris, H., Mohd Kasim, Z., Zubairi, S.I. & Babji, A.S. 2023. Antioxidant capacity and sensory quality of soy-based powder drink mix enriched with functional hydrolysate of swiftlet (Aerodramus fuciphagus). Arabian Journal of Chemistry 16(3): 104553.

Mama, C.N., Nnaji, C.C., Emenike, P.C. & Chibueze, C.V. 2020. Potential environmental and human health risk of soil and roadside dust in a rapidly growing urban settlement. International Journal of Environmental Science and Technology 17: 2385-2400.

Mele, M.Z. & Giuffré, A.M. 2018. Pre-and post-harvest factors and their impact on oil composition and quality of olive fruit. Emirates Journal of Food and Agriculture 30(7): 592-603.

Nnenna, O. & Gift, O. 2020. Effect of antibacterial agents on the microbial flora of some fruits and vegetables. International Research Journal of Science and Technology 1(4): 299-304.

Olakunle, O.O., Joy, B.D. & Irene, O.J. 2019. Antifungal activity and phytochemical analysis of selected fruit peels. Journal of Biology and Medicine 3(1): 40-43.

Parajuli, R., Thoma, G. & Matlock, M. 2019. Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. The Science of the Total Environment 650(2): 2863-2879.

Phuong, N., Le, T., Camp, J. & Raes, K. 2020. Evaluation of antimicrobial activity of Rambutan (Nephelium lappaceumL.) peel extracts. International Journal of Food Microbiology 321: 108539.

Rahmadi, A., Yusriandi, Hanafi, M., Junaifid, Supriadi, Setianingrum, D., Dina, W.A. & Susilawati, R. 2020. Physical, microbial and pesticide contaminations on fresh vegetables and fruit marketed in Samarinda-Indonesia. IOP Conference Series: Earth and Environmental Science. p. 443.

Rakariyatham, K., Zhou, D., Rakariyatham, N. & Shahidi, F. 2020. Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel by-products: Potential sources for phenolic compounds and use as functional ingredients in food and health applications. Journal of Functional Foods 67: 103846.

Rosa-Esteban, D.L.K., Sepúlveda, L., Chávez, G.M.L., Torres, L.C., Estrada-Gil, L.E., Aguilar C.N. & Ascacio, V.J.A. 2023. Valorization of Mexican Rambutan peel through the recovery of ellagic acid via solid-state fermentation using a yeast. Fermentation 9(8): 723.

Saparbekova, A.A., Latif, A.S. & Altekey, A. 2021. Risks of microbiological contamination of fruits and vegetables used for food. Bulletin of the Innovative University of Eurasia. pp. 97-102.

Serrato, D.L., Aviles, N.A., Soto, B.A., Rivera, V.L., Goenaga, R. & Bayman, P. 2019. Botryosphaeriaceae fungi as causal agents of dieback and corky bark in rambutan and longan. Plant Disease 104(1): 105-115.

Simonetti, T., Peter, K., Chen, Y., Jin, Q., Zhang, G., LaBorde, L. & Macarisin, D. 2021. Prevalence and distribution of Listeria monocytogenes in three commercial tree fruit packinghouses. Frontiers in Microbiology 12: 652708.

Subedi, T. 2022. Determination of chemical parameters of fruits available in the markets of Pokhara, Nepal. Prithvi Journal of Research and Innovation 4: 11-23.

Surboyo, M.D., Ernawati, D.S. & Parmadiati, A.E. 2019. Glossitis mimicking median rhomboid glossitis induced by throat lozenges and refreshment candies. Journal of International Oral Health 11: 323-328.

Suriati, L., Supartha, U., Bambang, A.H. & Ida, B.W.G. 2020. Physicochemical characteristics of fresh-cut tropical fruit during storage. International Journal on Advanced Science Engineering and Information Technology 10(5): 1731-1736.

Tavares, J., Martins, A.P., Fidalgo, L.G., Lima, V., Amaral, R.A., Pinto, C.A., Silva, A.M. & Saraiva, J.A. 2021. Fresh fish degradation and advances in preservation using physical emerging technologies. Foods 10: 780.

Tian, M., Jixi, G., Zhang, L., Zhang, H., Feng, C. & Jia, X. 2021. Effects of dust emissions from wind erosion of soil on ambient air quality. Atmospheric Pollution Research 12(1): 101108.

Torgbo, S., Prapassorn, R., Udomlak, S. & Prakit, S. 2022. Biological characterization and quantification of Rambutan (Nephelium lappaceumL.) peel extract as a potential source of valuable minerals and ellagitannins for industrial applications. ACS Omega 7(38): 34647-34656.

Tripathi, P.C. 2021. Rambutan (Nephelium lappaceumvar. lappaceum). In Tropical Fruit Crops: Theory to Practical, edited by Ghosh, S.N. & Sharma, R.R. New Delhi: Jaya Publishing House. pp. 542-575.

Ural, N. 2021. The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences 13(1): 197-218.

Vella, F.M., Calandrelli, R., Cautela, D. & Laratta, B. 2023. Natural antioxidant potential of melon peels for fortified foods. Foods 12: 2523.

Venturini, M.E., Gimeno, D., Franco, K., Redondo, D. & Oria, R. 2018. Rambutan peel as a source of food antioxidant extracts. Acta Hortic. 1194: 971-978.

Yu, Z., Li, X., Wang, S., Liu, L. & Zeng, E. 2021. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China. Environmental Pollution 284: 117358.

Zainol, N., Subramanian, S., Adnan, A.S., Zulkifli, N.H., Zain, A.A.M., Kassim, N.R.W. & Kamarudin, A.A. 2020. The potential source for composite flours as food ingredient from local grown crops. Food Research 4(2): 24-30.

Zaouay, F., Brahem, M., Boussaa, F., Mahjoub, H.F., Tounsi, M.S. & Mars, M. 2020. Effects of fruit cracking and maturity stage on quality attributes and fatty acid composition of pomegranate seed oils. International Journal of Fruit Science 20: S1959-S1968.

Zhang, H., Yamamoto, E., Murphy, J. & Locas, A. 2020. Microbiological safety of ready-to-eat fresh-cut fruits and vegetables sold on the Canadian retail market. International Journal of Food Microbiology 335: 108855.

Zubairi, S.I., Md Zabidi, N.A.S., Azman, Z.Z., Mohd Kamaruddin, S.N.D., Mohd Kasim, Z., Jamil, S. & Lazim, A. 2022. Pleurotus ostreatus cultivation: Development of a robust pre-blocks oyster mushroom substrate from wood ash and palm fronds. Sains Malaysiana51(2): 329-343.

Zubairi, S.I., Ishak, N., Sani, N.A., Mohd Kassim, Z. & Nurzahim, Z. 2021. Yogurt drink spoilage profiles: Characterization of physico-chemical properties and coliform potability analysis. Arabian Journal of Chemistry 14(9): 103340.

 

*Pengarang untuk surat-menyurat; email: saiful-z@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya